Abstract

In this paper, the self-heating effect for multi-finger fully depleted SOI nMOSFETs is investigated. The layout parameters of the transistor are varied, and the conductance-based method is used for the extraction of the thermal resistance. An empirical-based scalable thermal resistance model that accounts for geometrical layout parameters is developed. Further, hot carrier stress degradation is examined, and a correlation between self-heating and hot carrier degradation is established. The associated self-heating with geometrical dimension influences the amount of hot carrier degradation and should be taken into account for accurate degradation modeling. It is found that with the increase of temperature, the contribution of the parasitic bias temperature instability effect increases the drift of the threshold voltage. Improved thermal and reliability performance is achieved for the device structures where a continuous active area is divided into multiple smaller active regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.