Abstract

Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.

Highlights

  • The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop cardiovascular disease (CVD) in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD

  • Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, leading to disease

  • The fetal programming hypothesis was proposed by Dr Barker based on epidemiologic studies demonstrating the association between low birth weight (LBW), as a consequence of poor maternal nutrition, and development of coronary heart disease and hypertension in adult life (Forsdahl, 1977; Barker and Osmond, 1986; Barker and Osmond, 1988)

Read more

Summary

Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, leading to disease.

The Developmental Origins Hypothesis
Fetal Stress Factors Implicated in DOHaD
Mechanisms Implicated in Fetal Programming of CVD
OXIDATIVE STRESS AND DOHaD
Oxidative Stress and Gestational Complications
Oxidative Stress and Mechanisms Implicated in Fetal Programming of CVD
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call