Abstract

A study devoted to the dynamic response of sandwich panels to underwater and in-air explosions is presented. The study is carried out in the context of a geometrically nonlinear model of sandwich structures featuring anisotropic laminated face sheets and a transversely compressible orthotropic core. The unsteady pressure generated by the explosion and acting on the face of the sandwich panel includes the effect of the pressure wave transmission through the core. Its implications on the structural time-histories as corresponding to the underwater and in-air explosions are put into evidence. The effects of the transverse core compressibility on dynamic response are highlighted. In this sense, one of its major implications is the possibility to capture interactively the global and local (wrinkling) dynamic response of the panel. It is shown that implementation of the structural tailoring technique in the face sheets can constitute an important mechanism for enhancing the dynamic load-carrying capacity of sandwich panels when exposed to blast pulses. Effects of the core, the composite architecture of face sheets, orthotropy of the material of the core, geometrical non-linearities, initial geometric imperfection, and the damping ratio are investigated, and their implications for the dynamic response are highlighted. The comprehensive structural model considered in conjunction with the time-dependent loads generated by the underwater and in-air explosions, and the results obtained in this context, are expected to contribute to a better understanding of the response behavior and to be instrumental toward a better design of these structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call