Abstract

With the purpose of generating a microbial strain for L-ornithine production in Corynebacterium glutamicum, genes involved in the central carbon metabolism were inactivated so as to modulate the intracellular level of NADPH, and to evaluate their effects on L-ornithine production in C. glutamicum. Upon inactivation of the 6-phosphoglucoisomerase gene (pgi) in a C. glutamicum strain, the concomitant increase in intracellular NADPH concentrations from 2.55 to 5.75 mmol g⁻¹ (dry cell weight) was accompanied by reduced growth rate and L-ornithine production, suggesting that L-ornithine production is not solely limited by NADPH availability. In contrast, inactivation of the gluconate kinase gene (gntK) led to a 51.8 % increase in intracellular NADPH concentration, which resulted in a 49.9 % increase in L-ornithine production. These results indicate that excess NADPH is not necessarily rate-limiting, but is required for increased L-ornithine production in C. glutamicum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.