Abstract

Arterial blood pressure is critically dependent on sodium balance. The kidney is the key player in maintaining sodium homeostasis. Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the highly selective, amiloride-sensitive epithelial sodium channel (ENaC). Direct evidence that dysfunction of ENaC participates in blood pressure regulation has come from the molecular analysis of two human genetic diseases, Liddle’s syndrome and pseudohypoaldosteronism type 1 (PHA-1). Both, increased sodium reabsorption despite low aldosterone levels in Liddle’s patients and decreased sodium reabsorption despite high aldosterone levels in PHA-1 patients, demonstrated that ENaC is an effector for aldosterone action. Gene-targeting and classical transgenic technology enable the generation of mouse models for these diseases and the analysis of the involvement of the epithelial sodium channel (ENaC) in the progress of these diseases. A first mouse model using αENaC transgenic knockout mice [αENaC(−/−)Tg] mimicked several clinical features of PHA-1, like salt-wasting, metabolic acidosis, high aldosterone levels, growth retardation and increased early mortality. Such mouse models will be necessary in testing the involvement of genetic and/or environmental factors like salt-intake in hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call