Abstract
Bacterial DNA acts as an alert signal for eukaryotic cells through immunostimulatory CpG motifs. These sequences have therapeutic properties promoting protective immune TH1 responses and are recognized by a membrane protein belonging to the Toll-like receptor (TLR) family, named TLR-9. The aim of this study was to test the capability of murine hepatocytes to sense bacterial DNA and to develop antibacterial mechanisms against Salmonella typhimurium. We show that hepatocyte cell lines and mRNA extracts from murine liver constitutively express TLR-9, which is down-regulated by LPS and the mix of IFNγ, IL-1β and LPS. Also, we have found that hepatocyte cell lines can sense the presence of bacterial DNA and respond to it by increasing the pool of intracellular peroxides. This results in inhibition of intracellular growth of S. typhimurium when infected cells were incubated in the presence of CpG synthetic oligonucleotides (CpG-ODN). Expression of hepatocyte Mn-SOD is also induced by stimulation with CpG-oligodeoxynucleotides, LPS, and the mix of IFNγ, IL-1β and LPS. These results reinforce the prominent role of hepatocytes as a microbial product-responsive cell and the capabilities of CpG-ODN sequences as potent inducers of the innate immune response through the activation of a broad range of cell types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.