Abstract
The biogenesis and function of chloroplast are controlled both by anterograde mechanisms involving nuclear-encoded proteins targeted to chloroplast and by retrograde signals from plastid to nucleus contributing to regulation of nuclear gene expression. A number of experimental evidences support the implication of chlorophyll biosynthesis intermediates on the retrograde signaling, albeit an earlier-postulated direct link between accumulation of chlorophyll intermediates and changes in nuclear gene expression has recently been challenged. By characterization of Arabidopsis mutants lacking the chloroplast localized NADPH-thioredoxin reductase (NTRC) we have recently proposed that imbalanced activity of chlorophyll biosynthesis in developing cells modifies the chloroplast signals leading to alterations in nuclear gene expression. These signals appear to initiate from temporal perturbations in the flux through the pathway from protoporphyrin to protochlorophyllide rather than from the accumulation of a single intermediate of the tetrapyrrole pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.