Abstract

The effects of ATP on the pancreatic vascular bed were studied on the isolated rat pancreas perfused at a constant pressure so as any change in the vascular tone induces a modification in the flow rate. This study was performed in two different experimental conditions: 1) In the presence of indomethacin, inhibiting the cyclo-oxygenase and prostacyclin (PGI2) synthesis, ATP (which acts on vasodilatator P2Y receptors and vasoconstrictor P2X and P2U receptors) was used at a concentration (165 microM) which did not modify per se the vascular flow rate. With indomethacin, ATP induced a slight but significant and long lasting decrease in the flow rate. This effect is different from that induced by the stimulation of P2X receptors; it is comparable to that induced by the activation of P2U receptors. 2) In the presence of 2,2'pyridylisatogen tosilate (PIT) used at two different concentrations, the first (5 microM) inhibiting the P2Y effects on insulin secreting B cells and pancreatic vessels, the second (25 microM) inhibiting the P2X effects on pancreatic vessels. The effects of ATP are different according to the concentration of PIT. In both cases, ATP induced only a vasoconstriction. However, the kinetics of the flow rate is totally different: in the presence of 5 microM PIT, an immediate and drastic vasoconstriction was observed, followed by a long lasting vasoconstriction of lesser magnitude, which can be ascribed to P2X and P2U receptor activation, respectively. This hypothesis was confirmed by the results in the presence of PIT at 25 microM. At this concentration this compound completely suppressed the drastic and transient vasoconstriction, so that only a progressive and long lasting vasoconstriction of the P2U type could be observed. From these results, it can be concluded that: 1) PGI2 plays a part in the vasodilatator effects of ATP. 2) At the concentrations used, PIT does not block the vasoconstriction induced by P2U receptors. 3) The effects of ATP on pancreatic vessels is dependent on the balance between its vasodilator effect due to the activation of P2Y receptors and its vasoconstrictor effect which involves two types of receptors: P2X and P2U.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.