Abstract

BackgroundAir pollution by fine aerosol particles is among the leading causes of poor health and premature mortality worldwide. The growing awareness of this issue has led several countries to implement air pollution legislation. However, populations in large parts of the world are still exposed to high levels of ambient particulate pollution. The main aim of this work is to evaluate the potential impact of implementing current air quality standards for fine particulate matter (PM2.5) in the European Union (EU), United States (US) and other countries where PM2.5 levels are high.MethodsWe use a high-resolution global atmospheric chemistry model combined with epidemiological concentration response functions to investigate premature mortality attributable to PM2.5 in adults ≥30 years and children <5 years. We perform sensitivity studies to estimate the reductions in mortality that could be achieved if the PM2.5 air quality standards of the EU and US and other national standards would be implemented worldwide.ResultsWe estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand per year. For the 28 EU member states we estimate 173 thousand and for the United States 52 thousand premature deaths in 2010. Based on sensitivity analysis, applying worldwide the EU annual mean standard of 25 μg/m3 for PM2.5 could reduce global premature mortality due to PM2.5 exposure by 17 %; while within the EU the effect is negligible. With the 2012 revised US standard of 12 μg/m3 premature mortality by PM2.5 could drop by 46 % worldwide; 4 % in the US and 20 % in the EU, 69 % in China, 49 % in India and 36 % in Pakistan. These estimates take into consideration that about 22 % of the global PM2.5 related mortality cannot be avoided due to the contribution of natural PM2.5 sources, mainly airborne desert dust and PM2.5 from wild fires.ConclusionsOur results reflect the need to adopt stricter limits for annual mean PM2.5 levels globally, like the US standard of 12 μg/m3 or an even lower limit to substantially reduce premature mortality in most of the world.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-016-0170-8) contains supplementary material, which is available to authorized users.

Highlights

  • Air pollution by fine aerosol particles is among the leading causes of poor health and premature mortality worldwide

  • It has been estimated that 70–80 % of premature deaths attributable to outdoor air pollution are due to ischemic heart disease and strokes, 15–25 % to chronic obstructive pulmonary disease and acute lower respiratory infections and about 5–6 % to lung cancer [8,9,10]

  • We performed sensitivity calculations to assess the impact of applying PM2.5 upper limits based on air quality standards in the European Union (EU) and United States (US), and other nationally adopted or proposed standards for annual mean PM2.5 pollution

Read more

Summary

Introduction

Air pollution by fine aerosol particles is among the leading causes of poor health and premature mortality worldwide. The main aim of this work is to evaluate the potential impact of implementing current air quality standards for fine particulate matter (PM2.5) in the European Union (EU), United States (US) and other countries where PM2.5 levels are high. Outdoor air pollution by fine particles ranks among the top ten global health risk factors that can lead to premature mortality [1]. Most of these particles originate from combustion engines, power plants, industry, household energy use, agriculture, biomass burning and natural sources like desert dust. No concentration level has been defined below which health damage can be fully prevented while the Global Burden of Disease (GBD) applies a PM2.5 threshold of 7.3 ± 1.5 μg/m3 [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.