Abstract

Strong interference in ultrathin film semiconductor absorbers on metallic back reflectors has been shown to enhance the light harvesting efficiency of solar cell materials. However, metallic back reflectors are not suitable for tandem cell configurations because photons cannot be transmitted through the device. Here, we introduce a method to implement strong interference in ultrathin film top absorbers in a tandem cell configuration through use of distributed Bragg reflectors (DBRs). We showcase this by designing and fabricating a photoelectrochemical-photovoltaic (PEC-PV) stacked tandem cell in a V-shaped configuration where short wavelength photons are reflected back to the photoanode material (hematite, Fe2O3), whereas long wavelength photons are transmitted to the bottom silicon PV cell. We employ optical simulations to determine the optimal thicknesses of the DBR layers and the V-shape angle to maximize light absorption in the ultrathin (10 nm thick) hematite film. The DBR spectral response can be tailored to allow for a more than threefold enhancement in absorbed photons compared to a layer of the same thickness on transparent current collectors. Using a DBR to couple a bottom silicon PV cell with an ultrathin hematite top PEC cell, we demonstrate unassisted solar water splitting and show that DBRs can be designed to enhance strong interference in ultrathin films while enabling stacked tandem cell configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.