Abstract
With the advent of the ubiquitous era, many studies have been devoted to various situation-aware services in the semantic web environment. One of the most challenging studies involves implementing a situation-aware personalized music recommendation service which considers the user's situation and preferences. Situation-aware music recommendation requires multidisciplinary efforts including low-level feature extraction and analysis, music mood classification and human emotion prediction. In this paper, we propose a new scheme for a situation-aware/user-adaptive music recommendation service in the semantic web environment. To do this, we first discuss utilizing knowledge for analyzing and retrieving music contents semantically, and a user adaptive music recommendation scheme based on semantic web technologies that facilitates the development of domain knowledge and a rule set. Based on this discussion, we describe our Context-based Music Recommendation (COMUS) ontology for modeling the user's musical preferences and contexts, and supporting reasoning about the user's desired emotions and preferences. Basically, COMUS defines an upper music ontology that captures concepts on the general properties of music such as titles, artists and genres. In addition, it provides functionality for adding domain-specific ontologies, such as music features, moods and situations, in a hierarchical manner, for extensibility. Using this context ontology, we believe that logical reasoning rules can be inferred based on high-level (implicit) knowledge such as situations from low-level (explicit) knowledge. As an innovation, our ontology can express detailed and complicated relations among music clips, moods and situations, which enables users to find appropriate music. We present some of the experiments we performed as a case-study for music recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.