Abstract
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects modeling (LMM) such as cross-sectional multilevel modeling and latent growth modeling. It is well known that LMM can be formulated as structural equation models. However, one main difference between the implementations in SEM and LMM is that maximum likelihood (ML) estimation is usually used in SEM, whereas restricted (or residual) maximum likelihood (REML) estimation is the default method in most LMM packages. This article shows how REML estimation can be implemented in SEM. Two empirical examples on latent growth model and meta-analysis are used to illustrate the procedures implemented in OpenMx. Issues related to implementing REML in SEM are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.