Abstract

It is well-known that any quantum gate can be decomposed into the universal gate set {T, H, CNOT}, and recent results have shown that each of these gates can be implemented using a dynamic quantum walk, which is a continuous-time quantum walk on a sequence of graphs. This procedure for converting a quantum gate into a dynamic quantum walk, however, can result in long sequences of graphs. To alleviate this, in this paper, we develop a length-3 dynamic quantum walk that implements any single-qubit gate. Furthermore, we extend this result to give length-3 dynamic quantum walks that implement any single-qubit gate controlled by any number of qubits. Using these, we implement Draper's quantum addition circuit, which is based on the quantum Fourier transform, using a dynamic quantum walk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.