Abstract

Landauer's principle states that erasure of each bit of information in a system requires at least a unit of energy kBTln2 to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount kBTln2, in keeping with the second law of thermodynamics. In this work, we build on our earlier work on spin Hall devices and focus on heat and charge transport in generic spintronics devices in the presence of a spin bath. We show how a properly initialized nuclear spin subsystem can be used as a memory resource for a Maxwell's Demon to harvest available heat energy from the reservoirs to induce charge current that can power an external electrical load. We also show how to initialize the nuclear spin subsystem using charge currents which necessarily dissipate energy. This opens up a new avenue towards energy storage applications using spintronics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.