Abstract

Despite advancements in radiologic, laboratory, and pathological evaluations, differentiating between benign and malignant bile duct strictures remains a diagnostic challenge. Recent developments in massive parallel sequencing (MPS) have introduced new opportunities for early cancer detection and management, but these techniques have not yet been rigorously applied to biliary samples. We prospectively evaluated the Oncomine Comprehensive Assay (OCA) and the Oncomine Pan-Cancer Cell-Free Assay (OPCCFA) using biliary brush cytology and bile fluid obtained via endoscopic retrograde cholangiopancreatography from patients with bile duct strictures. The diagnostic performance of MPS testing was assessed and compared to the pathological findings of biliary brush cytology and primary tissue. Mutations in TP53, BRAF, CTNNB1, SMAD4, and K-/N-RAS identified in biliary brush cytology samples were also detected in the corresponding bile fluid samples from patients with extrahepatic cholangiocarcinoma. These mutations were also identified in the bile fluid samples, but with variant allele frequencies lower than those in the corresponding biliary brush cytology samples. In control patients diagnosed with gallstones, neither the biliary brush cytology samples nor the bile fluid samples showed any pathogenic mutations classified as tier 1 or 2. Our study represents a prospective investigation into the role of MPS-based molecular testing in evaluating bile duct strictures. MPS-based molecular testing shows promise in identifying actionable genomic alterations, potentially enabling the stratification of patients for targeted chemotherapeutic treatments. Future research should focus on integrating OCA and OPCCFA testing, as well as similar MPS-based assays, into existing surveillance and management protocols for patients with bile duct strictures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.