Abstract
Portable Raman instruments provide quick, nondestructive analysis of organic and inorganic compounds, making it widely applicable in various disciplines. However, the instrument’s accuracy when analyzing pure, or multiple component mixtures is still an aspect that needs improvement. This study explored machine learning algorithms to classify single compounds, binary, ternary, and quaternary mixtures by the compound name, and the compound’s class, using seized drugs and common diluents as a model. The accuracies were ≥ 93% for most pure, binary mixtures, and quaternary mixtures algorithms. Therefore, incorporating machine learning algorithms in portable instruments, can improve the detection of unknown substances with high accuracies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.