Abstract

Fine-grained hardware protection could provide a powerful and effective means for isolating untrusted code. However, previous techniques for providing fine-grained protection in hardware have lead to poor performance. Legba has been proposed as a new caching architecture, designed to reduce the granularity of protection, without slowing down the processor. Unfortunately, the designers of Legba have not attempted an implementation. Instead, all of their analysis is based purely on simulations. We present an implementation of the Legba design on a MIPS Core Processor, along with an analysis of our observations and results. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Implementing Legba: Fine-Grained Memory Protection Aaron Sheffield, Ross T. Sowell, Mike Wilson Department of Computer Science & Engineering Washington University in St. Louis One Brookings Drive, Campus Box 1045 St. Louis, Missouri 63130-4899 {ajs6, mlw2}@cec.wustl.edu rsowell@gmail.com Abstract—Fine-grained hardware protection could provide a powerful and effective means for isolating untrusted code. However, previous techniques for providing fine-grained protection in hardware have lead to poor performance. Legba has been proposed as a new caching architecture, designed to reduce the granularity of protection, without slowing down the processor. Unfortunately, the designers of Legba have not attempted an implementation. Instead, all of their analysis is based purely on simulations. We present an implementation of the Legba design on a MIPS Core Processor, along with an analysis of our observations and results.Fine-grained hardware protection could provide a powerful and effective means for isolating untrusted code. However, previous techniques for providing fine-grained protection in hardware have lead to poor performance. Legba has been proposed as a new caching architecture, designed to reduce the granularity of protection, without slowing down the processor. Unfortunately, the designers of Legba have not attempted an implementation. Instead, all of their analysis is based purely on simulations. We present an implementation of the Legba design on a MIPS Core Processor, along with an analysis of our observations and results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.