Abstract

A new tool for the exploration and diagnosis of the internal magnetic field of plasmas in the DIII-D tokamak in the form of a constraint on the EFIT (Equilibrium Fitting) Grad-Shafranov code based on the Faraday-effect Radial Interferometer-Polarimeter (RIP) diagnostic is presented, including description, verification, and sample application. The physics underlying the diagnostic and its implementation into EFIT are discussed, and the results showing the verification of the model are given, and the model's limitations are discussed. The influence of the diagnostic's input on the resulting equilibrium parameters is characterized. The effect of electron density profile refinement is evaluated and found to be negligible. A sample application of the diagnostic is shown, indicating that the RIP constraint has similar effects on the equilibrium as motional Stark effect constraints do.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.