Abstract

The ever-increasing demand for faster execution time, smaller resource usage and lower energy consumption has compelled architects of embedded processors to adopt more specialized hardware features with irregular data paths and heterogeneous registers that are customized to the needs of their target applications. These processors consequently provide a rich set of specialized instructions in order to enable programmers to access these features. Such an instruction is typically a multi-output instruction (MOI), which outputs multiple results parallely in order to exploit inherent underlying hardware parallelism. Earlier study has exhibited that MOIs help to enhance performance in aspect of instruction counts and code size. However, as MOIs require more operands, they tend to increase not only the size of the instruction set but also the size of individual instructions. This can be a serious setback for embedded processors, which are mostly subject to strong resource limitations (particularly in this case, limited instruction encoding space). For this reason, these processors are often allowed to include only a very small subset of the total desired MOIs in their instruction sets, despite there can be sufficient silicon real estate to accommodate these specialized MOIs. To attack this problem, we introduce a novel instruction encoding scheme based on the dynamic implied addressing mode (DIAM). In this paper, we will discuss how we have overcome the encoding space problem for our target embedded processor whose instruction set has been augmented with a variety of MOIs. Our DIAM-based encoding scheme employs a small on-chip buffer to supplement extra encoding information for MOIs at run time. The empirical results are promising: the scheme allows us to encode many more MOIs for our processor; thereby helping us to achieve considerable reduction of code size as well as running time after the DIAM is additively implemented in the original architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.