Abstract
High-quality optical flow computation algorithms are computationally intensive. The low computational speed of such algorithms causes difficulties for real-world applications. In this article, we propose an optimized implementation of the classical Combine-Brightness-Gradient (CBG) model on the Xilinx ZYNQ FPGA-SoC, by taking advantage of the inherent algorithmic parallelism and ZYNQ architecture. The execution time decreases to 0.82 second with a lower power consumption (1.881W). It is better than software implementation on PC (Intel i7-3520M, 2.9GHz), which costs 2.635 seconds and 35W. We use C rather than HDLs to describe the algorithm for rapid prototyping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.