Abstract
Designers in architecture and engineering are increasingly employing parametric models linked to performance simulations to assist in early building design decisions. This context presents a clear opportunity to integrate advanced functionality for engaging with quantitative design objectives directly into computational design environments. This paper presents a toolbox for data-driven design, which draws from data science and optimization methods to enable customized workflows for early design space exploration. It then applies these approaches to a multi-objective conceptual design problem involving structural and energy performance for a long span roof with complex geometry and considerable design freedom. The case study moves from initial brainstorming through design refinement while demonstrating the advantages of flexible workflows for managing design data. Through investigation of a realistic early design prompt, this paper reveals strengths, limitations, potential pitfalls, and future opportunities for data-driven parametric design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.