Abstract

This paper proposes a novel approach in double random phase encryption based on compressive fractional Fourier transform along with the kernel steering regression. The method increases the complexity of the image by using fractional Fourier transform and taking fewer measurements from the image data. Numerical results are given to analyze the validity of this technique. Considering natural images to be sparse in some domain, we apply a compressive sensing (CS) approach by using a TwIST algorithm. The encryption process has kernel steering regression algorithm for denoising and compressive sensing technique for image compression along with the fractional Fourier transform that makes the image in more complex form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.