Abstract

The clustered regularly interspersed short palindromic repeats (CRISPR) and its associated nuclease (Cas9) offers a unique and easily reprogrammable system for editing eukaryotic genomes. Cas9 is guided to the target by an RNA strand, and precise edits are created by introducing double-stranded breaks. However, nuclease activity of Cas9 is also triggered at other sites other than the target sit, which is a major limitation for various applications. Cas9 variants have been designed to improve the efficacy of the tool by introducing certain mutations. However, the on-target activity of such Cas9 variants is often seen as compromised. Hence, understanding the sub-molecular differences in the variants is essential to elucidate the factors that contribute to efficiency. The study reveals distortions in the PAM-distal regions of the nucleic hybrids as well as changes in the interactions between the Cas9 variants and RNA-DNA hybrid, contributing to the explanation for differences in on-target activity. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.