Abstract

The interface properties and deposition residual stresses may have significant effects on the diamond-coated tool performance. However, it is still not fully understood how the interface mechanical behavior and deposition residual stress together influence the thermo-mechanical behavior of a diamond-coated tool during machining. In this study, a two-dimensional (2D) cutting simulation incorporating both deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in failure initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates the implementation of a cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failures occurred during the cutting simulation is presented. The result further shows that a larger uncut chip thickness will result in cohesive delamination of the coating-substrate interface during cutting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.