Abstract

Osteoporosis is a medical disorder that causes bone tissue to deteriorate and lose density, increasing the risk of fractures. Applying Neural Networks (NN) to analyze medical imaging data and detect the presence or severity of osteoporosis in patients is known as osteoporosis classification using Deep Learning (DL) algorithms. DL algorithms can extract relevant information from bone images and discover intricate patterns that could indicate osteoporosis. DCNN biases must be initialized carefully, much like their weights. Biases that are initialized incorrectly might affect the network's learning dynamics and hinder the model's ability to converge to an ideal solution. In this research, Deep Convolutional Neural Networks (DCNNs) are used, which have several benefits over conventional ML techniques for image processing. One of the key benefits of DCNNs is the ability to automatically Feature Extraction (FE) from raw data. Feature learning is a time-consuming procedure in conventional ML algorithms. During the training phase of DCNNs, the network learns to recognize relevant characteristics straight from the data. The Squirrel Search Algorithm (SSA) makes use of a combination of Local Search (LS) and Random Search (RS) techniques that are inspired by the foraging habits of squirrels. The method made it possible to efficiently explore the search space to find prospective values while using promising areas to refine and improve the solutions. Effectively recognizing optimum or nearly optimal solutions depends on balancing exploration and exploitation. The weight in the DCNN is optimized with the help of SSA, which enhances the performance of the classification. The comparative analysis with state-of-the-art techniques shows that the proposed SSA-based DCNN is highly accurate, with 96.57% accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.