Abstract
The maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD) has been presented as a suboptimum multiple-input multiple-output (MIMO) detection scheme which can provide almost the same performance as the optimum maximum likelihood (ML) MIMO detection scheme but with the reduced complexity. However, due to the lack of parallelism and the regularity in the decoding structure, the conventional QRM-MLD which uses the tree-structure still has very high complexity for the very large scale integration (VLSI) implementation. In this paper, we modify the tree-structure of conventional QRM-MLD into trellis-structure in order to obtain high operational parallelism and regularity and then apply the Viterbi algorithm to the QRM-MLD to ease the burden of the VLSI implementation. We show from our selected numerical examples that, by using the QRM-MLD with our proposed trellis-structure, we can reduce the complexity significantly compared to the tree-structure based QRM-MLD while the performance degradation of our proposed scheme is negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.