Abstract

Abstract Emotion perception in stroke patients is affected since there is abnormality in the brain. Here, researchers focused on the impact of left brain damage and right brain damage towards emotion recognition. Due to the impaired emotion recognition, it is a challenge for stroke patients to express themselves in daily communication. Hence, it is inspiring to see the possibility to predict patient’s emotional state so as to prevent recurrent stroke. In this work, electroencephalograph (EEG) of 19 left brain damage patients (LBD), 19 right brain damage patients (RBD) and 19 normal control (NC) are collected as database. During data collection, six emotions (sad, disgust, fear, anger, happy and surprise) are induced by using audio visual stimuli. After normalization, EEG signals are filtered by using Butterworth 6th order band-pass filter at the cut-off frequencies of 0.5 Hz and 49 Hz. Then, wavelet packet transform (WPT) technique is implemented to localize five frequency bands: alpha (8 Hz–13 Hz), beta (13 Hz–30 Hz), gamma (30 Hz–49 Hz), alpha-to-gamma (8 Hz–49 Hz), beta-to-gamma (13 Hz–49 Hz). In WPT, four wavelet families are chosen: daubechies 4 (db4), daubechies 6 (db6), coiflet 5 (coif5) and symmlet 8 (sym8). Hurst exponents are extracted from each band and wavelet family and are classified by using K-nearest Neighbour (KNN) and Probabilistic Neural Network (PNN). Two classifications are done: comparison between three groups and comparison between six emotions. The results showed that all the H values are anti-correlated (0

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call