Abstract
<p>The voltage control in the power distribution network is challenged firstly by constantly increasing in power demand and secondly by a growing number of distributed connections, which significantly changes the load flow in the network. Situation is worsening with the current heavily implemented micro-generation of Solar PV. Consequently, the uncontrollable rapid changes in the power distribution network would affect voltage instability at the feeder with wide area power demand. Voltage instability would affect the energy efficiency of the electrical equipment. Moreover, the lifespan of some equipment would be shortened due to the excessive and unstable voltage supplied. The proposed research aims to implement the low impedance voltage optimization system in solving the existing problem. The voltage optimization system had been tested on both resistive and inductive loads. The power consumption of the loads had been measured at a few discrete values of voltage optimization within the statutory region. Further tests were conducted on industrial water pump, general lightings with mixed loads, office building, restaurant and plastic injection moulding machine. The power measurements were logged and the results in term of power consumption were analysed. The results showed that the proposed optimization mechanism successfully optimize and saved 6.81%, 14.42%, 13.97%, 12.23%, and 26.23% of the power consumptions in respective tests.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.