Abstract
With the increasing use of building-integrated photovoltaic technology, it has become necessary for solar panels to blend in with their surroundings. Diffractive nanostructures can be used to reduce optical losses and create colorful solar cells. To make colors on Cu(In,Ga)Se2 (CIGS) thin-film solar cells, we fabricated diffractive nanostructures by using nanoscale imprinting and transfer lithography methods. And we investigated how the material types and pattern shapes of the nanostructures influence the optical properties of solar cells, such as the short-circuit current density (JSC), coordination of color appearance, and color quality. We used two types of pillars and grating nanostructures of SiO2 and TiO2 layers on CIGS thin-film solar cells to produce various colors. The SiO2 demonstrated an increase in JSC without significant loss of color quality compared to TiO2. By utilizing a hexagonally arrayed pillar pattern, colors are observed at various angles on an axis different from the incident light, unlike colors observed only at a single angle in the grating structure. The nanoimprinting lithography process allowed us to produce high-quality nanostructures on both rigid glass and flexible stainless-steel substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.