Abstract

We investigate the performance of a three-qubit error correcting code in the framework of superconducting qubit implementations. Such a code can recover a quantum state perfectly in the case of dephasing errors but only in situations where the dephasing rate is low. Numerical studies in previous work have however shown that the code does increase the fidelity of the encoded state even in the presence of high error probability, during both storage and processing. In this work we give analytical expressions for the fidelity of such a code. We consider two specific schemes for qubit-qubit interaction realizable in superconducting systems; one ${\ensuremath{\sigma}}_{z}{\ensuremath{\sigma}}_{z}$ coupling and one cavity-mediated coupling. With these realizations in mind, and considering errors during storing as well as processing, we calculate the maximum operation time allowed in order to still benefit from the code. We show that this limit can be reached with current technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.