Abstract

We describe the implementation of the shearing box approximation for the study of the dynamics of accretion disks in the Athena magnetohydrodynamics (MHD) code. Second-order Crank-Nicholson time differencing is used for the Coriolis and tidal gravity source terms that appear in the momentum equation for accuracy and stability. We show this approach conserves energy for epicyclic oscillations in hydrodynamic flows to round-off error. In the energy equation, the tidal gravity source terms are differenced as the gradient of an effective potential in a way which guarantees that total energy (including the gravitational potential energy) is also conserved to round-off error. We introduce an orbital advection algorithm for MHD based on constrained transport to preserve the divergence-free constraint on the magnetic field. This algorithm removes the orbital velocity from the time step constraint, and makes the truncation error more uniform in radial position. Modifications to the shearing box boundary conditions applied at the radial boundaries are necessary to conserve the total vertical magnetic flux. In principle similar corrections are also required to conserve mass, momentum and energy, however in practice we find the orbital advection method conserves these quantities to better than 0.03% over hundreds of orbits. The algorithms have been applied to studies of the nonlinear regime of the MRI in very wide (up to 32 scale heights) horizontal domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.