Abstract

The problem of significant extension of the band of the transionospheric radio channel to the maximum possible values is solved to improve the efficiency of satellite communication systems. Hardware and software are created to suppress the group delay dispersion using methods of data mining for experimental diagnostics of a transionospheric communication line. Algorithms and tools for intelligent sensory diagnostics of wideband radio channels with adaptation to dispersion variability are developed. In the absence of adaptation, it is possible to create radio channels of undistorted transmission with a bandwidth ratio of no greater than 4.5%, while adaptation to dispersion variability makes it possible to increase the bandwidth ratio to 11.5%. The greatest bandwidth ratio (20–25%) for dispersion-free transmission can be achieved with the aid of adaptive inverse filtering of the channel frequency response in combination with such intelligent methods as equalization with error, machine learning of channel equalizer, and big data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call