Abstract
The Poisson equation is a fundamental equation of mathematical physics that describes the potential distribution in static fields. Solving the Poisson equation on a grid is computationally intensive and can be challenging for large grids. In recent years, quantum computing has emerged as a potential approach to solving the Poisson equation more efficiently. This article uses quantum algorithms, particularly the Harrow–Hassidim–Lloyd (HHL) algorithm, to solve the 2D Poisson equation. This algorithm can solve systems of equations faster than classical algorithms when the matrix A is sparse. The main idea is to use a quantum algorithm to transform the state vector encoding the solution of a system of equations into a superposition of states corresponding to the significant components of this solution. This superposition is measured to obtain the solution of the system of equations. The article also presents the materials and methods used to solve the Poisson equation using the HHL algorithm and provides a quantum circuit diagram. The results demonstrate the low error rate of the quantum algorithm when solving the Poisson equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.