Abstract

The paper deals with the numerical solution of the quasi-variational inequality describing the equilibrium of an elastic body in contact with a rigid foundation under Coulomb friction. After a discretization of the problem by mixed finite elements, the duality approach is exploited to reduce the problem to a sequence of quadratic programming problems with box constraints, so that efficient recently proposed algorithms may be applied. A new variant of this method is presented. It combines fixed point with block Gauss–Seidel iterations. The method may be also considered as a new implementation of fixed point iterations for a sequence of problems with given friction. Results of numerical experiments are given showing that the resulting algorithm may be much faster than the original fixed point method and its efficiency is comparable with the solution of frictionless contact problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.