Abstract

Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call