Abstract
Information and news about Covid-19 received various responses from social media users, including Twitter users. Changes in netizen opinion from time to time are interesting to analyze, especially about the patterns of public sentiment and emotions contained in these opinions. Sentiment and emotional conditions can illustrate the public's response to the Covid-19 pandemic in Indonesia. This research has two objectives, first to reveal the types of public emotions that emerged during the Covid-19 pandemic in Indonesia. Second, reveal the topics or words that appear most frequently in each emotion class. There are seven types of emotions to be detected, namely anger, fear, disgust, sadness, surprise, joy, and trust. The dataset used is Indonesian-language tweets, which were downloaded from April to August 2020. The method used for the extraction of emotional features is the lexicon-based method using the EmoLex dictionary. The result obtained is a monthly graph of public emotional conditions related to the Covid-19 pandemic in the dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.