Abstract
Studies related to Tafsir Qur'an have only been carried out based on a manual system or on application-based development. The purpose of this study is to build an application which can classify type of interpretation automatically into two classes, tafsir Bil Ma'tsur and tafsir Bil Ra'yi, can provide user convenience in the Al-Qur-an. KNN algorithm is a reliable algorithm in the classification process, also has many parts of the algorithm. This study was done by applying K-Nearest Neighbor (KNN) algorithm with an accuracy of 98.12%. However KNN had been compared firstly with Modified K-Nearest Neighbor (MKNN) and Fuzzy K-Nearest Neighbor (FKNN) algorithms, where the two algorithms had 98.01% and 88.3% accuracy respectively. MKNN is the best algorithm with the highest accuracy, but also has a high error value by 4.3% which is higher than KNN, 1.9%. From the research conducted, the more text documents used in KNN modeling, the higher accuracy will be. Therefore, in the implementation of this application KNN is used as modeling in the conclusion of Tafsir Al-Qur'an. Tests performed with BlackBox Testing and User Aceptance Test reached value of 100% and 98.8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.