Abstract

Hydrogels have several excellent characteristics suitable for biomedical use such as softness, biological inertness and solute permeability. Hence, integrating hydrogels into microfluidic devices is a promising approach for providing additional functions such as biocompatibility and porosity, to microfluidic devices. However, the poor mechanical strength of hydrogels has severely limited device design and fabrication. A tetra-poly(ethylene glycol) (tetra-PEG) hydrogel synthesized recently has high mechanical strength and is expected to overcome such a limitation. In this research, we have comprehensively studied the implementation of tetra-PEG gel into microfluidic device technology. First, the fabrication of tetra-PEG gel/PDMS hybrid microchannels was established by developing a simple and robust bonding technique. Second, some fundamental features of tetra-PEG gel/PDMS hybrid microchannels, particularly fluid flow and mass transfer, were studied. Finally, to demonstrate the unique application of tetra-PEG-gel-integrated microfluidic devices, the generation of patterned chemical modulation with the maximum concentration gradient: 10% per 20 μm in a hydrogel was performed. The techniques developed in this study are expected to provide fundamental and beneficial methods of developing various microfluidic devices for life science and biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.