Abstract
A method for fabricating high-pass terahertz quasi-optical filters in the form of thick (up to 1 mm in thickness) self-bearing copper microstructures of subwavelength topology is described. This method is based on forming a high-aspect-ratio mask of SU-8 resist on a silicon wafer via deep X-ray lithography through a tungsten X-ray mask followed by electroplating a copper layer through the resistive mask. An example of a 212-µm thick structure with a cutoff frequency of 0.42 THz having the geometry of hexagon-shaped through-holes arranged on a triangular lattice is considered. The results of broadband THz characterization and electromagnetic analysis of the structure fabricated are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optoelectronics, Instrumentation and Data Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.