Abstract

Large eddy simulation (LES) has the potential to model complex separated flows, where Reynolds Averaged Navier–Stokes (RANS) based methods often fail. An important aspect of LES is specifying correlated turbulent fluctuations at the inlet boundary. This is particularly important in turbomachines, where turbulence length scale and intensity play a key role in the correct prediction of component performance. In this work, a method is implemented into an unstructured Computational Fluid Dynamics (CFD) solver to impose correlated turbulent fluctuations in a compressible form. It is shown that compressibility effects are particularly important in turbomachinery and must be taken into account. The method uses a pre-processing method to generate a cube of isotropic, homogeneous turbulence. The velocity fluctuations so obtained are used to determine a fluctuating Mach number in order to evaluate the instantaneous total pressure and temperature fluctuations at domain inlet. In the authors knowledge this is one of the first attempts to define correlated fluctuations in a compressible form. The method is successfully applied to two turbomachinery related flows. Firstly, the jet flow from a propelling nozzle is investigated. Following this, the flow over a low pressure (LP) turbine blade is predicted. Results from the LES simulations show that modifications to the inlet conditions can significantly affect flow development. For the jet, changes in the shear layer and peak shear stress are shown, important in the context of high frequency sideline noise generated by the jet. Despite what is suggested in the literature the differences in shear stresses are important also in a non-swirling jet. For the LP turbine, incoming turbulent fluctuations modify the onset of transition and the extent of separation bubble. Without imposed turbulence fluctuations, loss is overpredicted by up to 50%. Moreover it is important to use a compressible solver. Despite the fact that the majority of the results proposed in literature on LP turbine is using incompressible solvers, the difference in terms of pressure coefficient, Cp, is comparable to turbulence contribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.