Abstract

Sulfur hexafluoride (SF6) is a greenhouse gas that is emitted at the surface because of its use as an insulator in electrical transmission equipment and electronic devices. Since its quasi-linear emission growth and its very long lifetime, SF6 can be used as a tracer for the Age of Air (AoA) to diagnose changes in the Brewer Dobson Circulation (BDC). The chemistry of SF6 has been implemented in the Chemistry Transport Model (CTM) of the Belgian Assimilation System for Chemical ObsErvations (BASCOE). Reaction rates were taken from previous studies while an electron density has been taken from WACCM-X-SD simulations.In this contribution, BASCOE-CTM simulations driven by ERA5 and MERRA2 will be discussed considering SF6 with and without mesospheric sinks (i.e. passive SF6 in the latter case). During the course of the simulations, the computed mixing ratios have also been saved in the space of MIPAS observations to analyse the impact of the MIPAS sampling in its AoA derivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.