Abstract

The fabrication of substrates for surface-enhanced Raman spectroscopy (SERS), which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role for expanding the surface-enhanced Raman spectroscopy to a powerful quantitative and non-invasive measurement technique. In this paper, a method for the fabrication of capable SERS-active substrates by laser treatment of gold films supported on glass with single 351 nm UV-laser pulses is presented. Resulting nanometer scaled structures show enhancement factors of up to 106 with very high spatial reproducibility for a monolayer of benzenethiol. A method for integration of these substrates into PDMS microchannels is shown. A technique for the generation of a simple mold master for PDMS replication is presented. Rhodamine 6G is used as model system to demonstrate continuous measurements on a solid SERS-active substrate in a microchannel. The label-free detection of the biological molecule albumin is improved by an order of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call