Abstract
The results of experiments on the implementation of single-qubit quantum gates with a single 87Rb atom in an optical dipole trap with a wavelength of 850 nm are presented. The trap is formed by a long focal-length objective lens located outside the vacuum chamber of a magneto-optical trap. An atom is detected using a resonance fluorescence signal with an sCMOS video camera. The experiments involved the trapping and confinement of a single atom at times up to 50 s, optical pumping by polarized laser radiation, microwave transitions between two hyperfine sublevels of the ground state, and the measurement of the quantum state of the atom by pushing it from the trap. Rabi oscillations are observed during the “clock” microwave transition 5S1/2(F = 2, MF = 0) → 5S1/2(F = 1, MF = 0) between two operating qubit levels at a frequency of up to 4.2 kHz, a contrast of up to 95%, and a coherence time of up to 3 ms. These oscillations correspond to the implementation of two basic single-qubit quantum operations (Hadamard gate, NOT gate) from various initial qubit states with an average fidelity of 95.2 ± 3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.