Abstract

Steganography is the technique of hiding confidential information within any media. Using steganography, information can be hidden in different embedding mediums, known as carriers. These carriers can be images, audio files, video files, and text files. The focus in this paper is on the use of an image file as a carrier, a new steganographic technique for concealing digital images: the Segment Compression Steganographic Algorithm (SCSA) which is based on the Karhunen-Loeve Transform (KLT) is presented. A detailed presentation of the component parts of the algorithm follows, accompanied by quantitative analyses of parameters of interest. In addition, we make a few suggestions regarding possible further refinements of the SCSA. In Segment Compression Steganographic Algorithm the input data are first compressed using the KLT in order to achieve a higher concealing capacity, and then hidden in the least significant bits of the carrier object, which is represented in the RGB spatial domain. By combining the two procedures, we are aiming at three different research directions: increasing the capacity for concealing large messages, attaining a high quality stego object so that it is almost imperceptibly different from the carrier object and improving the execution time of the algorithm's implementation by concurrently processing different image segments (blocks) on a multi-core microprocessor. The final purpose for creating this algorithm is to implement it on yet to be released multi-core

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.