Abstract

Abstract In this paper, a robotic ankle–foot orthosis (AFO) is developed for individuals with a paretic ankle, and an impedance-based assist-as-needed controller is designed for the robotic AFO to provide adaptive assistance. First, a description of the robotic AFO hardware design is presented. Next, the design of the finite state machine is introduced, followed by an introduction to the modeling of the robotic AFO. Additionally, the control of the robotic AFO is presented. An impedance-based high-level controller that is composed of an ankle impedance based torque generation controller and an impedance controller is designed for the high-level control. A compensated low-level controller that is composed of a braking controller and a proportional-derivative controller with a compensation part is designed for the low-level control. Finally, a pilot study with eight healthy participants is conducted, and the experimental results demonstrate that with the proposed control algorithm, the robotic AFO has the potential for ankle rehabilitation by providing adaptive assistance. In the assisted condition with a high level of assistance, reductions of 8% and 20.1% of the root mean square of the tibialis anterior and lateral soleus activities are observed, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call