Abstract
This paper considers a class of separable nonlinear least squares problems in which a model can be represented as a linear combination of nonlinear functions. A regularized nonlinear parameter optimization approach is presented for coping with the potential ill-conditioned problem of parameter divergence. Together with a regularization parameter detection technique, Tikhonov regularization and truncated singular value decomposition are utilized in the estimation of the linear parameters if the nonlinear parameters are changed during the parameter optimization process, which centers on a nonlinear parameter search using the Levenberg-Marquardt algorithm. Benefiting from the regularization in parameter optimization, the potential ill-conditioned issue can be avoided, and the multi-step-ahead forecasting accuracy of the estimated model may be largely improved. The usefulness of this approach is illustrated by means of a chaotic time-series prediction and nonlinear industrial process modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.