Abstract

Complex coefficient digital filters, with applications for processing real sequences, are examined. The method is quite general, and allows any real rational transfer function to be expressed in terms of a complex rational transfer function of reduced order. When implemented in complex hardware form, the reduction of filter order can provide an increase in computational efficiency and speed. Conventional filter structures, such as parallel, cascade, lattice, and state-space forms, are extended to the complex domain. Illustrative examples of complex coefficient filter synthesis are included, along with coefficient sensitivity comparisons between the complex coefficient filters and their real coefficient counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.