Abstract

Continued increases in the emission of greenhouse gases by passenger vehicles have accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require a priori knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strategy used is the Equivalent Consumption Minimization Strategy (ECMS), which uses an equivalence factor to define the control strategy and the power train component torque split. An equivalence factor that is optimal for a single drive cycle can be found offline with a priori knowledge of the drive cycle. The RBF-ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data (drive cycles) are used to train the RBF-ANN. For the majority of drive cycles examined, the RBF-ANN implementation is shown to produce fuel economy values that are within ±2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF-ANN is that it does not require a priori drive cycle knowledge and is able to be implemented in real-time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF-ANN could be improved to produce better results across a greater array of driving conditions.

Highlights

  • The objective of this research is to design an artificial neural network for implementation with an adaptive control strategy for a hybrid electric vehicle

  • The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions

  • The results from ANN-Equivalent Consumption Minimization Strategy (ECMS) will be compared to the fuel economy results obtained using the optimal equivalence factor from ordinary ECMS

Read more

Summary

Introduction

The objective of this research is to design an artificial neural network for implementation with an adaptive control strategy for a hybrid electric vehicle. The general purpose of a hybrid electric vehicle control strategy is to split the torque between the electric motor and internal combustion engine (ICE) in a way that maximizes efficiency. These control strategies are colloquially known as torque-split algorithms (TSA). In everyday driving scenarios, this information is not available To overcome this lack of knowledge, the best-performing control strategies are augmented with predictive and/or learning capabilities. These are often called adaptive control strategies. The predictive and/or learning capabilities allow control parameters to be adapted during real-time driving

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call