Abstract

We propose and experimentally investigate two distinct power-over-Fiber (PoF) approaches, aiming to remotely power Internet-of-Things (IoT) sensing systems for Industry 4.0 environments. The first proof-of-concept is focused on demonstrating a 1-W optical power transmission through a 50-m-fiber-optic link for powering an Arduino Uno, a temperature sensor (DS1820B), and a 433-MHz transceiver (FS1000A). The designed PoF link is able to provide up to 280 mW with power transmission efficiency (PTE) of 28.9%. The second implementation is based on a 100-m PoF link capable of transmitting over 0.6-W optical power and delivering 140-mW electrical power with PTE of 23%. In this scheme, an Arduino Pro Mini, another temperature sensor (LM35), and a 2.4-GHz transceiver (nRF24L01+) are employed. A voltage stability analysis enables to demonstrate that our PoF system is capable of delivering stable output voltage at 8.5 V and 5 V, with only 0.6% and 0.2% voltage fluctuations. In addition, an industrial oven is employed to evaluate the sensor performance considering temperature measurements from both sensing systems. The obtained results demonstrate that PoF might be considered as a potential technology to optically-power IoT wireless sensing systems for Industry 4.0 scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.