Abstract

The present study focuses on the implementation of PISO algorithm to simulate cavitating flows. For simulation of unsteady behaviors of cavitation which have practical applications, the development of unsteady PISO algorithm based on the non-conservative approach is investigated. The effects of mixture compressibility are considered to improve accuracy of simulations. For multi-phase simulation, single-fluid Navier–Stokes equations, along with the volume fraction transport equation, are employed. The bubble dynamics model is utilized to simulate phase change. To prove capabilities of the developed PISO algorithm to simulate cavitating flows, unsteady simulation of cavitation around NACA0015 hydrofoil, a two dimensional flat plat, and a three dimensional circular disk are performed. The frequency of flow, pressure distributions, cavitating vortex shedding, and cavity characteristics are analyzed to discern results accuracy. To investigate accuracy of results, comparisons with available published experimental data are made and good agreement is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call